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Abstract It is widely recognized that human vision relies
on contextual information, typically arising from each of
many levels of analysis. Local gradient information, oth-
erwise ambiguous, is seen as part of a smooth contour or
sharp angle in the context of an object’s boundary or corner.
A stroke or degraded letter, unreadable by itself, contributes
to the perception of a familiar word in the context of the sur-
rounding strokes and letters. The iconic Dalmatian dog stays
invisible until a multitude of clues about body parts and pos-
ture, and figure and ground, are coherently integrated. Con-
text is always based on knowledge about the composition of
parts that make up a whole, as in the arrangement of strokes
that make up a letter, the arrangement of body parts that
make up an animal, or the poses and postures of individuals
that make up a mob. From this point of view, the hierarchy
of contextual information available to an observer derives
from the compositional nature of the world being observed.
We will formulate this combinatorial viewpoint in terms of
probability distributions and examine the computational im-
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plications. Whereas optimal recognition performance in this
formulation is NP-complete, we will give mathematical and
experimental evidence that a properly orchestrated compu-
tational algorithm can achieve nearly optimal recognition
within a feasible number of operations. We will interpret the
notions of bottom-up and top-down processing as steps in
the staging of one such orchestration.
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1 Introduction

A frame from a 1920’s shot of the expressionless face of the
Russian actor Ivan Mozzhukhin is shown, repeatedly, on the
right hand side of Fig. 1. The shot was captured by the di-
rector Lev Kuleshov as part of an experiment context and a
study of its role in the cinematic experience. In three sepa-
rate clips, Kuleshov juxtaposes the shot with a dead child ly-
ing in an open coffin, a seductive actress, or a bowl of soup.
Asked to interpret Mozzhukhin’s expression, audiences re-
ported sadness, lust, or hunger depending on whether the
expression followed the images of the dead child, the seduc-
tive actress, or the bowl of soup. Many praised the actor’s
skill. The idea that the movie-going experience is based on
composition as much as content became the basis for the so-
called montage school of Russian cinema and it remains an
essential tool of modern filmmaking.

The effects of context on human perception have been
well studied for hundreds of years, and are well illustrated
with many familiar illusions involving size and boundary
perception, grouping, and shading. But most contextual ef-
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Fig. 1 The Kuleshov Effect.
Top Row. Frames from a
sequence with a dead child
followed by a shot of Ivan
Mozzhukhin’s face. Middle
Row. Frames from a sequence
with an actress in a seductive
pose, followed by the same shot
of Mozzhukhin’s face. Bottom
Row. Frames from a sequence
with a bowl of soup, followed
again by the same shot of
Mozzhukhin’s face. Audiences
viewing the clips ascribe
different emotions to the same
expression, sadness, lust, or
hunger, depending on the
context

fects are not illusory. Sighted people are all experts at vision,
which makes it difficult, if not impossible, to appreciate the
multiple levels of context that critically influence virtually
every visual perception. On the other hand, engineers try-
ing to build artificial vision systems invariably discover the
ambiguities in local raw pixel data. It is often impossible to
decipher cursive, even one’s own cursive, without a measure
of context, which might come from any one of many lev-
els, including topic, sentence, or just neighboring words or
letters. The same effect is striking when applied to auditory
signals, where, for example, words spliced from continuous
speech are often unintelligible.

Many cognitive scientist would argue that the layers of
context that influence the perception of a part or object
(e.g. a phoneme or a word) are a manifestation of the com-
positional nature of mental representation (e.g. Fodor and
Pylyshyn 1988). The vision scientist might be tempted to
turn this around and say that these representations are them-

selves manifestations of the compositional nature of the vi-
sual or auditory world (cf. Warren 2010), but either way,
or both, the evidence is that biological-level performance
in perceptual tasks relies on knowledge about the relational
groupings of parts into wholes, simultaneously at multi-
ple levels of a hierarchy. This combinatorial, or composi-
tional, viewpoint is a common starting point for discrimina-
tive or generative models of vision (Sudderth et al. 2005;
Ommer and Buhmann 2007; Epshtein and Ullman 2005;
Bengio and LeCun 2007; Amit and Trouvé 2007; Serre et
al. 2007; Ahuja and Todorovic 2008), often within gram-
mar or grammar-like organizations (Burl and Perona 1998;
Zhu and Mumford 2006; Chen et al. 2007; Fidler and
Leonardis 2007; Zhang 2009; Chang 2010; Felzenszwalb
and McAllester 2010).

The idea in generative models is to use probability dis-
tributions to capture likely and unlikely arrangements, start-
ing from arrangements of local features (e.g. local edges or
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Fig. 2 Minimal Compositional World. There are only two parts, horizontal bar and vertical bar, and one object, the letter L. The presence of
both parts is always interpreted as the letter L. In the experiments, PZ1,Z2 (0,0) = 0.6, PZ1,Z2 (1,0) = PZ1,Z2 (0,1) = 0.1, and PZ1,Z2 (1,1) = 0.2

texture elements), and in principle continuing recursively
to high-level expert knowledge (e.g. a curator’s knowl-
edge about antique furniture, a grandmaster’s knowledge
about strengths and weaknesses in an arrangement of chess
pieces). We will adopt the generative compositional view-
point here, and use it to examine the practical problems of
clutter, false alarms, and computational burden in artificial
vision systems.

Clutter and the Limits of Artificial Vision Systems It is
one thing to build a classification device that performs on
images with single objects placed in simple backgrounds
and quite another to find and classify these same objects in
unconstrained scenes. Everyone who builds vision systems
knows this. Real background has structure, and too often the
structure masquerades as bits and pieces of the objects of
interest. Run a correlator for an eye, with say a 10 × 10
patch, on backgrounds in an ensemble of images with bricks
and trees and cars (e.g. mid-day Manhattan street scenes as
captured by Google’s Street View) and you’ll probably get
many good matches per frame, if “good match” is defined to
be at least as good as 5% of the matches to real eyes in the
same scenes. This kind of thing is to be expected, if you buy
the compositional point of view. In particular, the parts of
an object of interest, such as a face, are reusable and can be
found among the pieces making up many other structures.
It is not that there are actual eyes in and among the bricks,
bark, and leaves, but that poorly-resolved oval shapes, with
darker centers and lighter surrounds, are not uncommon and
certainly not unique to faces. Indeed, if it were otherwise,
then excellent performance on face detection tasks could be
achieved by looking for nothing but eyes. But state-of-the-
art face-detection algorithms, still not as good as human ob-
servers, require more than just eyes. Google Street View, in
order to achieve a high certainty of detecting and obscuring
real faces, blurs many false-detections on car wheels, trees,
or just about anyplace that includes structured or textured
background. When operating at the same detection level, hu-
mans get almost no false positives.

In general, artificial vision systems operating at the high-
detection end of the ROC curve suffer many more false de-
tections in unconstrained scenes than do human observers. If

we think of a “part” as being defined by its local appearance,
rather than its participation in any particular object, then we
can think of these false detections as typically arising from
an unlucky arrangement of parts of the objects of interest.
A human interprets these same arrangements for what they
are: parts of other objects, or objects in their own right. One
could reasonably argue, then, that solving one vision prob-
lem, say the detection of a single object, requires solving
many vision problems, at least the detection of any other
object that shares aspects of its appearance, i.e. shares parts,
with the object of interest. How much knowledge is needed
to achieve biological-level performance on a single vision
task? Is it necessary to know about all objects to accurately
detect a single object? Is vision “AI-complete”?

We will argue in the opposite direction. We will give evi-
dence that, to the extent the world is compositional, a vision
system can achieve nearly optimal performance on a par-
ticular vision task, involving a single selected object or a
particular library of objects, by modeling only the object or
objects of interest. The idea is that most false detections oc-
cur at background locations that share bits and pieces of the
objects of interest, suggesting that the objects themselves,
viewed as compositional, define adequate background mod-
els through their own subparts and arrangements of subparts;
in a compositional world, objects define their own back-
ground models (Jin and Geman 2006).

Matching Templates Versus Matching Parts We often
think of cascades and other coarse-to-fine strategies as com-
putational imperatives. Even if we had a full-blown model
for the appearance of an object, it would not be feasible
to search for it at every pose (already six degrees of free-
dom for a rigid object). Except in very special circum-
stances, practical vision systems have to use some form
of coarse-to-fine search. This usually involves a very sim-
ple first pass that highlights candidate poses, followed by
a sequence of more refined and constrained searches in the
neighborhoods of the candidate poses. Computation might
be organized as a tree, for example to search simultane-
ously for multiple objects or to postpone decisions about
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pose or identity by exploring multiple branches, or as a cas-
cade, which might be suitable for single objects and lim-
ited pose variation. The computational advantages are well
documented, both from a practical and a theoretical stand-
point (Fleuret and Geman 2001; Viola and Jones 2001;
Moreels and Perona 2008; Blanchard and Geman 2005;
Amit and Trouvé 2010).

But computation might not be the whole story. There
might be other reasons for preferring a divide-and-conquer
strategy. Consider an imaginary object O that can appear at
only one pose, and an imaginary situation in which we have
a fully specified render model for the distribution on images
given that O is present. How would we test for O? How do
we compare the hypothesis “O is present” to the alternative
“O is absent”? It is not enough to have an appearance model
for O; we also need an appearance model for scenes with-
out O. The trouble is that “O absent” is an unimaginably
large mixture. What is more, as we have already observed,
this mixture will typically include components that repre-
sent objects with similarities to O, portions of which might
be essentially indistinguishable from portions of O.

An expedient approach would be to adopt a simple “back-
ground model,” meaning some kind of manageable alterna-
tive distribution, such as iid pixel intensities or more gener-
ally a random field that might capture local correlations. To
the extent that the background model is accurate, the likeli-
hood ratio, the ratio of the probability of the observed image
given that O is present to the probability under the back-
ground model, is an optimal statistic for this two-class prob-
lem (i.e. thresholding on the ratio will minimize false alarms
at any given detection rate). Another approach, also expedi-
ent, would be to test for the presence of parts of O. If all of
the parts are found, then declare that O is present. The same
simple background model could be used, locally, to test for
the individual parts.

Both approaches have advantages. The first, which is es-
sentially a template match, is relatively robust to a noisy pre-
sentation of the object. The parts may be difficult to confirm,
individually, but the collective evidence could be strong. The
second, although vulnerable to a poorly rendered part, has
an easier time distinguishing false alarms when the actual
scene contains parts and objects that resemble pieces of O,
but not O itself. Our purpose is to argue, through mathe-
matical and empirical evidence, that the second approach,
parts-based testing, is superior, especially when operating at
a high-detection threshold. In fact, it might not be far from
optimal. We will propose a particular version of parts-based
testing, similar to a particular scheduling of belief propaga-
tion, that is suitable for compositional models and is recur-
sive for hierarchical models. We will interpret the compu-
tational steps in terms of context as well as the notions of
“bottom-up” and “top-down” processing.

Parts-based testing can be viewed as an example of
coarse-to-fine search. The presence of a part does not con-
firm the presence of an object, but it does narrow the hy-
pothesis space. And if the part is essential, then the search
can be abandoned early when the part is missing. We will
discuss connections to sequential testing and potential com-
putational efficiencies, as well as the challenges that go with
the typical case in which multiple parts can have multiple
poses, defining an exponential number of instantiations of
an object.

We begin, in Sect. 2, with a simple thought experiment,
not unlike the discussion here of the fictional object O. We
will formulate the detection problem in such a way that we
can compare three approaches, the optimal approach (based
on the Neyman-Pearson Lemma), the template approach,
and the parts-based approach. The comparison will be math-
ematical, via comparisons of the area under the ROC curve
for each of the three alternatives, and via experiments with
simulated and real data, chosen to be simple enough that
good approximations to each of the three approaches can be
computed. Section 3 is devoted to a discussion of general-
izations of the results in Sect. 2, some of which are proven
and some of which are speculative. In Sect. 4 we focus on hi-
erarchical generative models and propose a recursive parts-
based approach to orchestrating computations. Throughout,
our examples are chosen, if not actually rigged, to make
possible the comparison to optimal detection. We can only
speculate that these comparisons will remain valid when op-
erating on more complex compositional models. Section 5
contains a summary and some concluding remarks.

2 A Simple World of Parts and Objects

We start with a minimal world of parts and objects, depicted
in Fig. 2. There are two parts, vertical and horizontal bars,
and one object, the letter L. The model is generative and in-
cludes latent variables, one for each part, that define an “in-
terpretation,” and a conditional rendering distribution for the
image given an interpretation. The latent variables, denoted
Z1 and Z2 for the horizontal and vertical bars, respectively,
are each binary (Z1,Z2 ∈ {0,1}), representing the absence
(0) or presence (1) of a part. The joint probability on parts
is P(Z1 = z1,Z2 = z2), z1, z2 ∈ {0,1}. Referring to Fig. 3,
the set of all pixels is denoted S and the subsets of pixels
affected by the presence or absence of the parts are denoted
S1 and S2, for the horizontal and vertical bars respectively.
We will refer to S1 and S2 as the “supports” of their respec-
tive parts. The intensity of pixel s ∈ S is treated as a random
variable and is denoted Xs . Generically, given any set of pix-
els A ⊆ S, we use lexicographic (raster) ordering to define a
vector of intensities XA from the set {Xs : s ∈ A}.

The generative model generates an image (xS ) by first
generating an interpretation (z1, z2) according to the joint
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Fig. 3 Pixel Lattice. S is the set of pixels. S1 ⊆ S (the “support of
part 1”) and S2 ⊆ S (the “support of part 2”) are the subsets of pixels
at which horizontal and vertical bars appear, respectively

distribution on Z1 and Z2; then assigning intensities iid in
S1 and, independently, iid in S2 according to N(z1,1) and
N(z2,1), respectively; and finally, independently of every-
thing else, assigning intensities iid in S \(S1 ∪S2) according
to N(0,1). In short, P(xS,Z1 = z1,Z2 = z2) = P(xS |Z1 =
z1,Z2 = z2)P (Z1 = z1,Z2 = z2),1 where

P(xS |Z1 = z1,Z2 = z2)

= P(xS1 |Z1 = z1)P (xS2 |Z2 = z2)P (xS\(S1∪S2))

=
∏

s∈S1

G(xs; z1,1)
∏

s∈S2

G(xs; z2,1)

×
∏

s∈S\(S1∪S2)

G(xs;0,1) (1)

and G(x;µ,σ ) stands for the normal probability density
(mean µ and standard deviation σ ) evaluated at x.

Imagine now that we are presented with a sample image
generated by the model. Our problem is to decide whether
or not the image contains the letter L. We will devise and an-
alyze several decision rules, and later relate the conclusions
to more general and relevant models, and to the discussion
of clutter, context, and computation.

Optimal Decision Rule In this example, the presence of
an L is equivalent to the presence of horizontal and verti-
cal bars, i.e. the event {Z1 = 1} ∩ {Z2 = 1}. This suggests
thresholding on the posterior probability, SG(xS)

.= P(Z1 =
1,Z2 = 1|XS = xS):

Declare “L” if SG(xS) > t and “not L” if SG(xS) ≤ t.

The threshold governs the tradeoff between false alarms and
missed detections, and the set of all thresholds defines the

1Pixel data, xs, s ∈ S, could be modeled as continuous or discrete. Un-
less we are conditioning, we will avoid writing Xs = xs , so that for
example P (xS |Z1 = z1,Z2 = z2) could be the evaluation of a density
or a probability mass function.

ROC curve. The decision rule is optimal in that it minimizes
the probability of missed detections at any given probabil-
ity of false alarms. (This follows from the Neyman-Pearson
Lemma and the observation that SG(xS) is a monotone in-
creasing function of the likelihood ratio P(xS |L present)

P (xS |L not present) .)

Observations:

1.

SG(xS)

= P(xS |Z1 = 1,Z2 = 1)P (Z1 = 1,Z2 = 1)

1∑

z1=0

1∑

z2=0
P(xS |Z1 = z1,Z2 = z2)P (Z1 = z1,Z2 = z2)

= P (xS1 |Z1 = 1)P (xS2 |Z2 = 1)P (Z1 = 1,Z2 = 1)

1∑
z1=0

1∑
z2=0

P (xS1 |Z1 = z1)P (xS2 |Z2 = z2)P (Z1 = z1,Z2 = z2)

(2)

which follows from Bayes’ formula and the decomposi-
tion in (1).

2. Also by (1):

SG(xS) = P(Z1 = 1,Z2 = 1|XS = xS)

= P(Z1 = 1|XS = xS)

× P(Z2 = 1|Z1 = 1,XS = xS)

= P(Z1 = 1|XS1 = xS1 ,XS2 = xS2)

× P(Z2 = 1|Z1 = 1,XS2 = xS2) (3)

As this is the product of two conditional probabilities,
it suggests a sequential version of the test SG(xS) >

t . In particular, if P(Z1 = 1|XS1 = xS1 ,XS2 = xS2) >

t fails then there is no point in computing P(Z2 =
1|Z1 = 1,XS2 = xS2), since SG(xS) ≤ P(Z1 = 1|XS1 =
xS1 ,XS2 = xS2). If it does not fail, then we compute
P(Z2 = 1|Z1 = 1,XS2 = xS2) and compare the prod-
uct P(Z1 = 1|XS1 = xS1 ,XS2 = xS2)P (Z2 = 1|Z1 =
1,XS2 = xS2) to t . We will return to this shortly.

Template Matching The problem with SG is that it can not
be computed, at least not in general, as is evident from ex-
amining equation (2). The denominator is the full likelihood,
meaning a mixture over every possible explanation of the
data. The mixture has one term for “{L}∩{XS = xS}” and
all the rest for “{not an L}∩{XS = xS}.” It is one thing to
compute (or estimate) a reasonable likelihood for the sin-
gleton events “L” or “nothing there,” and quite another to
compute a likelihood for the compound event “not an L.”
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A sensible, and in one way or another much-used, al-
ternative is to approximate “{not an L}∩{XS = xS}” by
“{nothing there}∩{XS = xS},” i.e. to use the statistic

ST (xS)
.= P(xS |Z1 = 1,Z2 = 1)P (Z1 = 1,Z2 = 1)

∑1
z=0 P(xS |Z1 = z,Z2 = z)P (Z1 = z,Z2 = z)

(4)

Observations:

1. By the same reasoning used for SG:

ST (xS)

= P(xS1 |Z1 = 1)P (xS2 |Z2 = 1)P (Z1 = 1,Z2 = 1)
∑1

z=0 P(xS1 |Z1 = z)P (xS2 |Z2 = z)P (Z1 = z,Z2 = z)

(5)

2. Thresholding on ST is the same as thresholding on the
likelihood ratio

P(xS1 |Z1 = 1)P (xS2 |Z2 = 1)

P (xS1 |Z1 = 0)P (xS2 |Z2 = 0)
(6)

which might be more familiar.
3. ST is optimal under a different probability, P̃ , on the la-

tent variables:

ST (xS) = P̃ (Z1 = 1,Z2 = 1|XS = xS) (7)

where P̃ (xS,Z1 = z1,Z2 = z2) is

P(xS,Z1 = z1,Z2 = z2|(Z1,Z2) = (1,1) or

(Z1,Z2) = (0,0)) (8)

i.e. pretending that the world has only two states, “ob-
ject” or “nothing.”

Testing for Parts This is a modification of the factored rep-
resentation, (3), of the optimal decision rule. The second
term, P(Z2 = 1|Z1 = 1,XS2 = xS2), is local to S2. On the
other hand, the first term, P(Z1 = 1|XS1 = xS1 ,XS2 = xS2),
is global in the sense that it involves the evaluation of data
likelihoods for every assignment of states to the remain-
ing parts. There is only one remaining part in this exam-
ple, but in general the number of assignments of states
will be exponential in the number of parts. These obser-
vations suggest a third statistic, derived by approximating
P(Z1 = 1|XS1 = xS1 ,XS2 = xS2) with the corresponding
local probability P(Z1 = 1|XS1 = xS1):

SP (xS)
.= P(Z1 = 1|XS1 = xS1)

× P(Z2 = 1|Z1 = 1,XS2 = xS2) (9)

The test SP (xS) > t can be performed sequentially. The first
test is for the first part (P(Z1 = 1|XS1 = xS1) > t), ignor-
ing information in the pixel data about the second part. If
P(Z1 = 1|XS1 = xS1) > t then the second part is tested (via
P(Z1 = 1|XS1 = xS1)P (Z2 = 1|Z1 = 1,XS2 = xS2) > t),
using the pixels in the support of the second part and a prob-
ability that is computed in the context of the presumed pres-
ence of the first part.

Foveal Limit We want to compare these three strategies.
The optimal serves as a benchmark against which the per-
formance of template matching and parts-based testing can
be measured. The setup is simple enough that both mathe-
matical and exhaustive computational analyses are possible.
Concerning mathematical analysis, we will examine relative
performances by comparing the ROC curves in the limit as
the density of pixels goes to infinity (the “foveal limit”).2 In
other words, spacing between pixels of the uniform grid S

in Fig. 3 is decreased to zero.
All three approaches are perfect in the foveal limit. Hence

the areas under the three ROC curves converge to one. We
will compare the rates at which the areas above the ROC
curves converge to zero. Obviously, neither template match-
ing nor parts-based testing can do better than optimal. But
which of the two suboptimal approaches should we expect to
better approximate optimal performance? One way to think
about this is to anticipate the primary sources of confusions
for each of the suboptimal tests. Consider two sets of cir-
cumstances. In the first, both parts are present (Z1 = 1 and
Z2 = 1) but one or the other of the parts is substantially de-
graded. A template takes into account all of the data, and
from this point of view the situation is not really different
from a uniform, but less severe, degradation of the entire
L. As for parts-based testing, it is vulnerable to missing the
degraded part, especially when the degraded part is tested
first.3 On the other hand either part can appear alone, and in
such cases template matching, in that it is essentially making
a forced decision between Z1 = Z2 = 1 and Z1 = Z2 = 0, is
vulnerable to false alarms.

It turns out that the consequences of the second circum-
stance dominate, overwhelmingly.

To make this precise, given a statistic S = S(xS), let
A S be the area above the ROC curve generated by the test
S(xS) > t . Necessarily, A ST

≥ A SG
and A SP

≥ A SG
(Ney-

man Pearson). Concerning the simple two-part world con-
structed above:

2We are using “foveal,” and later “saliency,” descriptively rather than
to suggest a biological model of saccades and fixations.
3The reader might be tempted to conclude that the optimal test should
suffer the same vulnerability to a degraded part, in light of the sequen-
tial representation of (3). But in contrast to the parts-based test, the first
test in the sequential version of the optimal decision function takes into
account the appearances of both parts.
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Theorem If P(Z1 = z1,Z2 = z2) > 0 for every pair (z1, z2)

∈ {0,1}2, then in the foveal limit

1. A SP
/A SG

remains bounded;
2. A ST

/A SP
→ ∞ exponentially fast.

Remarks

1. The conclusions are the same if

SP (xS) = P(Z1 = 1|XS1 = xS1)

× P(Z2 = 1|Z1 = 1,XS2 = xS2) (10)

is replaced by

S ′
P (xS)

.= P(Z1 = 1|XS1 = xS1)P (Z2 = 1|XS2 = xS2)

(11)

i.e. if the discovery of the first part is ignored in test-
ing for the second part. The theorem is about parts and
background, and not context per se. If parts are real, i.e.
themselves reusable and not just a proxy for an object,
and if the evidence is strong, then parts-based testing is
nearly optimal (in the sense that ASP

/A SG
is bounded)

and much better than templates. Context comes in when
we use (10) instead of (11) and, later (see “saliency”),
a modification of (10) for better finite-resolution perfor-
mance. The experimental evidence strongly favors (10)
over (11), and saliency-based testing over (10), but a
proof might require very different methods.

2. The conclusions are also the same if the last term in (1),
P(xS\(S1∪S2)), is replaced by an arbitrary conditional dis-
tribution, P(xS\(S1∪S2)|XS1∪S2 = xS1∪S2). But then it is
much harder to explore extensions, as we shall do shortly
in Sect. 3.

3. Concerning extensions, there is nothing particularly spe-
cial about the Gaussian distribution. The proof is con-
structed for more general distributions, as laid out at the
beginning of Appendix A.

Proof Generically, for any statistic S(xS)

A S = Prob{S(XS) < S(X̃S)} (12)

where XS and X̃S are independent samples from P(xS |{Z1
= 1} ∩ {Z2 = 1}) and P(xS |{{Z1 = 1} ∩ {Z2 = 1}}C), re-
spectively. This, along with the various independence as-
sumptions and a standard one-dimensional large-deviation
result, makes the comparisons relatively straightforward.
The detailed proof is in the Appendix A. !

The three ROC curves can be computed numerically. Fig-
ure 4 explores performance of all three classifiers as a func-
tion of resolution, for small and moderate pixel densities

as well as the larger densities corresponding to the “foveal
limit” covered by the theorem. At the lowest density there
are only two pixels in the support of the horizontal bar and
four in the support of the vertical. Template matching is not
far from optimal, and better than parts-based testing. The
order is already reversed when there are just four and eight
pixels representing the horizontal and vertical bars, respec-
tively. With eight and sixteen pixels, parts-based testing is
nearly indistinguishable from optimal, and substantially out-
performs the template model. A glance at higher resolutions
confirms that the template model converges to perfect clas-
sification much more slowly than the other two.

Saliency Testing P(Z1 = 1|XS1 = xS1)P (Z2 = 1|Z1 =
1,XS2 = xS2) is not the same as testing P(Z2 = 1|XS2 =
xS2)P (Z1 = 1|Z2 = 1,XS1 = xS1). In SP (xS)

.= P(Z1 =
1|XS1 = xS1)P (Z2 = 1|Z1 = 1,XS2 = xS2), the second part
has an advantage: if Z1 and Z2 are the parts of an object,
then typically P(Z2 = 1|Z1 = 1) > P (Z2 = 1). Therefore
the test SP (xS) > t is more vulnerable to a degraded view
of the first part then the second. With these observations in
mind, it might make sense to look first at the part for which
the evidence is strongest. (Occlusion, for which we would
advocate a layered or fully 3-D model, is another matter.)
When there are many parts, instead of just two, then the idea
can be applied recursively: first test for the most salient part,
then test for the conditionally most salient part, given the
part already found, and so on. The result is order depen-
dent because tests for all but the first part are conditioned
on the presence of the earlier parts. Here we take a closer
look at these ideas, by extending the theorem from two parts
to an arbitrary number of parts, and the factorization from
a fixed-order to a data-dependent order. We illustrate with
some additional experiments.

Suppose that our object, call it O, is made of N parts
rather than just two. Extending the notation in the obvious
way, we let Zk ∈ {0,1} indicate the absence or presence of
the kth part, 1 ≤ k ≤ N , let Sk ⊆ S be the pixels in the
support of the kth part, and let XSk be the corresponding

pixel intensities. We assume that Sk ∩ Sl = ∅, for all k ≠ l,
though there will be some discussion of this later. To ease
the notation, we will write vk

1 for a vector (v1, . . . , vk), and
use shorthand like vk

1 = 1 for vi = 1, ∀1 ≤ i ≤ k. The joint
distribution of XS,Z1,Z2, . . . ,ZN (or XS,ZN

1 for short) is
modeled by extension of the L model: P(xS,ZN

1 = zN
1 ) =

P(xS |ZN
1 = zN

1 )P (ZN
1 = zN

1 ), where

P(xS |ZN
1 = zN

1 ) = P(xS\⋃n
k=1 Sk )

N∏

k=1

P(xSk |Zk = zk)

= G(xS\⋃n
k=1 Sk ;0,1)

N∏

k=1

G(xSk ; zk,1)

(13)
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Fig. 4 (Color online) Illustration of Comparison Theorem. Each
panel contains three ROC curves, for the optimal (SG(xS) > t , black
stars), for template matching (ST (xS) > t , blue squares) and for parts-
based testing (SP (xS) > t , red circles). Resolution is progressively
increased, left-to-right and top-to-bottom (“foveal limit”). In each
panel the numbers of pixels on the horizontal and vertical bars (the

“supports”) are indicated by (nh,nv) (so nh = |S1| and nv = |S2|).
At low resolution, (nh,nv) = (2,4), template matching outperforms
parts-based testing. At higher resolutions parts-based testing is better,
and nearly optimal. Template matching is slow to converge to perfect
performance

and G(xA;µ,σ ) stands for
∏

s∈A G(xs;µ,σ ) (iid normal)
for any A ⊆ S. Finally, we say that the object O is present if
and only if all of its parts are present.4

The extensions of the optimal decision rule (SG(xS) > t)
and template matching (ST (xS) > t) involve straightforward
changes in the statistics:

SG(xS)
.= P(ZN

1 = 1|XS = xS) (14)

and

ST (xS)

.= P(xS |ZN
1 = 1)P (ZN

1 = 1)

P (xS |ZN
1 = 0)P (ZN

1 = 0) + P(xS |ZN
1 = 1)P (ZN

1 = 1)

(15)

All of the various observations about these two statistics,
made earlier for the case N = 2, still hold when N ≥ 2, with
obvious changes in the formulas.

4Among other things, (13) says that XSk is sufficient for zk , for each
k = 1,2, . . . ,N . But this is different from saying that given XSk the
state of Zk can be inferred equally well by ignoring the rest of the data,
XS\Sk . It can not. There is a difference between ordinary sufficiency
and “Bayesian sufficiency.” What is true is that X⋃N

k=1 Sk is Bayesian
sufficient for (Z1, . . . ,ZN).

As for parts-based testing (SP (xS) > t), we want to make
a more fundamental change by extending it to allow for a
data-dependent factorization. The factors can be thought of
as defining a sequence of tests, one for each part. The first
test is directed at the “most salient part,” by which we mean
the most probable part when only local evidence is taken
into account (i.e. based on XSk and not XS ):

k1
.= arg max

k
P (Zk = 1|XSk = xSk ) (16)

The first test is P(Zk1 = 1|XSk1 = xSk1 ) > t . If it succeeds,
then we compute the most salient of the remaining parts, but
now in the context of Zk1 = 1:

k2
.= arg max

k≠k1
P(Zk = 1|Zk1 = 1,XSk = xSk ) (17)

The second test is P(Zk1 = 1|XSk1 = xSk1 )P (Zk2 = 1|Zk1 =
1,XSk2 = xSk2 ) > t . Iterating through N parts generates a
random sequence ki = ki(XS), i = 1,2, . . . ,N

ki
.= arg max

k /∈{k1,...,ki−1}
P(Zk = 1|Zki−1

k1
= 1,XSk = xSk ) (18)

and defines a random (data-dependent) factorization, and a
new statistic SQ:

SQ(xS)
.=

N∏

i=1

P(Zki = 1|Zki−1
k1

= 1,XSki = xSki ) (19)
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where we stretch the notation, somewhat, by letting Z
ki−1
k1

stand for (Zk1 ,Zk2 , . . . ,Zki−1).
Concerning asymptotics, the same theoretical result

holds for SQ as for SP :

Corollary 1 If P(ZN
1 = zN

1 ) > 0 for every zN
1 ∈ {0,1}N ,

then in the foveal limit

1. A SQ
/A SG

remains bounded;
2. A ST

/A SQ
→ ∞ exponentially fast.

There is very little different from the proof as already given
in the Appendix A. We forgo the details.

Concerning finite-resolution performance, the difference
between a fixed-order parts-based test and a test ordered by
saliency can be explored by returning to the simple L world
and performing the same experiment as reported in Fig. 4,
but with

SQ(xS) = P(Zk1 = 1|XSk1 = xSk1 )

× P(Zk2 = 1|Zk1 = 1,XSk2 = xSk2 ) (20)

instead of

SP (xS) = P(Z1 = 1|XS1 = xS1)

× P(Z2 = 1|Z1 = 1,XS2 = xS2) (21)

Figure 5 is identical to Fig. 4, except that the random-
order parts-based test (SQ(xS) > t) was used. Comparing to
Fig. 4, parts-based testing is now nearly equivalent to opti-
mal testing at all resolutions. It is intuitive that visiting parts
in the order of saliency is better than using a fixed order, es-
pecially in the low-resolution domain, and no doubt some-
thing can be proven along these lines. But the approach will
need to be different, since the analysis behind the theorem
and corollary is asymptotic, in the foveal (high-resolution)
limit.

As an additional illustration, we chose a problem that
is still easy enough that versions of the optimal classifier
and template matching classifier can be computed, but is no
longer entirely artificial. Starting with an ASCII (e-book)
version of Ernest Hemingway’s novel “For Whom the Bell
Tools,” we built an image of every page by choosing a reso-
lution (pixel dimensions per page) and creating a JPEG im-
age. The first page, at an intermediate resolution, can be seen
on the left-hand side of Fig. 6. There is no noise, per se,
but the moderate resolution and random positioning of char-
acters relative to pixels creates significant degradation. The
task was to search the manuscript for specific words, “at”
and “the” in the experiments reported in the figure.

For each character in a word we built an appearance
model by assuming (wrongly) that the pixels in the support
are iid, with different distributions for the two conditions
“character present” and “character absent”. Every page was

partitioned into blocks, within which there could be a char-
acter, a symbol, or a blank. For each letter in the word and
each of the two conditions, “present” or absent”, the manu-
script was used to build two empirical distributions for the
pixels in the character’s support. These empirical distribu-
tions were used for the data model. Notice that typically
other characters would be present when a given character
was absent—the iid assumption is crude. Referring to Fig. 6,
then, the “optimal decision rule” isn’t really optimal since
the data model is merely an approximation.

These approximations do not seem to have affected the
relative performances, as compared to the L example in
which the model was exact. ROC performance of parts test-
ing with saliency-based ordering is indistinguishable from
the (approximate) optimal, and substantially better than tem-
plate matching, for detecting “at” and “the” (right-hand side
of the figure). Obviously, there are many levels of relevant
context, including word pairs that are more or less usual,
sentence structure, the topic of a paragraph or a chapter,
and even an author’s style and preferred vocabulary. For that
matter, the characters themselves create contextual effects as
seen at the level of strokes. We could just as well have used
strokes, instead of characters, as the basic parts.

We end this chapter with several observations about
SQ(xS), related to computation and interpretation:

1. Computation. How much does it cost to use the factor-
ization in equation (19)? The first step already requires
examining all of the data in the support of object O, i.e.
each of xSk , k = 1,2, . . . ,N in order to calculate each
of P(Zk = 1|XSk = xSk ). This was avoided in the fixed-
order scheme. On the other hand, once these N condi-
tional probabilities have been computed the remaining
tests come down to computing the conditional probabil-
ity of one part of O given the presence of a set of other
parts of O, P(Zki = 1|Zki−1

k1
= 1). (See below.) This is

the contextual term, involving a computation on the prior
distribution but not the data. It may be cheap or expen-
sive, but in any case some version of this computation, ei-
ther in closed form or by approximation (e.g. belief prop-
agation), is unavoidable in any formulation of contextual
reasoning.

The connection between the calculation of

P(Zki = 1|Zki−1
k1

= 1,XSki = xSki ) (22)

and the calculation of

P(Zki = 1|XSki = xSki ) (23)

is through the likelihood ratio

l = P(xSki |Zki = 1)

P (xSki |Zki = 0)
(24)
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Fig. 5 Saliency. Same as Fig. 4, except that parts are tested in the
order of saliency (i.e. their conditional probabilities given only local
pixel data) for the parts-based decision function. Compared to Fig. 4,

parts-based testing is now essentially optimal at all resolutions. (Color
scheme same as in Fig. 4)

Fig. 6 Word Search. On the left is an image of the first page of Ernest
Hemingway’s novel, “For Whom the Bell Tolls.” The ASCII e-book
was converted to a relatively low-resolution JPEG image. The image
was used to search for all instances of the words “at” and “the” in
the novel. A simple model was estimated and the ROC performance

of each of the three decision algorithms (optimal, template, and parts-
based) was computed. (Here, “optimal” means relative to the estimated
model.) Testing of parts, ordered by saliency, was indistinguishable
from the optimal test, and substantially better than template matching
for both word searches. (Color scheme same as in Fig. 4)
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The pixel data enters only through l, and in fact both
P(Zki = 1|Zki−1

k1
= 1,XSki = xSki ) and P(Zki = 1|XSki

= xSki ) are simple monotone functions of l. Specifically,
if

M(q, l)
.= lq

lq + (1 − q)
(25)

then P(Zki = 1|XSki = xSki ) = M(q, l) with q =
P(Zki = 1) and P(Zki = 1|Zki−1

k1
= 1,XSki = xSki ) =

M(q, l) with q = P(Zki = 1|Zki−1
k1

= 1).

In other words, P(Zki = 1|Zki−1
k1

= 1,XSki = xSki )

is just P(Zki = 1|XSki = xSki ), but with P(Zki = 1)

“tilted” by context into P(Zki = 1|Zki−1
k1

= 1).
2. Sequential Testing. There is a clear advantage to testing

SP (xS) > t one part at a time. Unless the object is ubiqui-
tous, one of the tests, P(Z1 = 1|XS1 = xS1) · · ·P(Zk =
1|Zk−1

1 = 1,XSk = xSk ) > t , will typically fail well be-
fore k = N . Most of the computation is avoided. By con-
trast, even if SQ(xS) > t fails early not much is gained,
since deciding which part to test first already costs order
N operations. (The conclusion is quite different when the
parts, Zk , have more than just two states, as we shall see
in Sect. 3.)

3. Context and Departure from Independence. Typically,
P(Zki = 1|Zki−1

k1
= 1) > P (Zki = 1), by virtue of the ac-

cumulating evidence for the object O, and since M(q, l)

is also monotone in q , the threshold for object ki is ef-
fectively reduced if it comes late in the testing. This
then is the condition for a contextual effect: P(Zki =
1|Zki−1

k1
= 1) > P (Zki = 1), which is reminiscent of

Barlow’s (1994) and other discussions of learning in
hierarchies (Harrison 2005; Zhu and Mumford 2006;
Ommer and Buhmann 2007; Chen et al. 2007). Iterating
the expression, and dropping the cumbersome ordering
(which is irrelevant to the interpretation of the inequal-
ity) we arrive at the condition

P(Z1 = 1,Z2 = 1, . . . ,ZN = 1)
∏N

k=1 P(Zk = 1)
> 1 (26)

which implies an analogous expression for any subset
of the parts of O. The ratio on the left-hand side of
(26) is a measure of departure from independence, in
the direction of a strong positive contextual effect. (What
Barlow calls a suspicious coincidence.) As a first cut
to developing a learning rule for hierarchical systems
it is not unreasonable to take the empirical estimate of
this ratio as evidence in favor of explicitly represent-
ing the composition of these parts, and thereby lead-
ing to the “discovery” of the object O. From this view-
point, (unsupervised) learning might be thought of as a

continuing effort to remove otherwise unexplained de-
pendencies through the introduction of new composi-
tions.

4. Local Likelihoods. It is instructive to compare the opti-
mal statistic to the parts-based statistic. Unlike the parts-
based strategy, where each ordering of the visitation to
parts defines a different statistic, the statistic defining
the optimal strategy (i.e. SG) is independent of order-
ing, whether or not the ordering is random. In particu-
lar

SG(xS) =
N∏

i=1

P(Zki = 1|Zki−1
k1

= 1,XSki = xSki , . . . ,

XSkN = xSkN ) (27)

for any permutation k of the indices {1,2, . . . ,N}, which
follows by straightforward extension of the reasoning
used to derive (3). Interpreted sequentially, every test
of a part looks ahead to the pixel data of the remain-
ing, untested parts. By comparison, SQ ((19) and SP

(same, but with fixed order) are local at every stage of
the computation. Contextual influence from the pixel
data associated with parts not yet visited is ignored, re-
lying only on the contextual influence from the parts
already visited and presumed present. It is not hard
to see, then, that the re-ordering of the part-visitation
schedule according to saliency can have a substan-
tial impact on performance, consistent with the experi-
ments.

3 Generalizations

Objects are not usually represented as single conjunctions
of rigid parts, as in the thought experiment studied in
Sect. 2. Almost by definition, invariance calls for a disjunc-
tion of conjunctions, e.g. representing variation in struc-
ture (three strokes in a European-style seven or two in an
American-style seven), pose (a large or small seven in this
or that vicinity), appearance (one color or another, matt or
glossy surface) and so on. Hierarchical models use “and/or
graphs” (Zhu and Mumford 2006; Chen et al. 2007), or
equivalently composition or production rules (Shieber 1992;
Jin and Geman 2006; Felzenszwalb and McAllester 2010),
to build layers of disjunctions of conjunctions. Invariance
emerges progressively with each layer, as the number of in-
stantiations increases exponentially. Here we will take a first
step in the direction of invariance by considering an object
made of parts with multiple states, each part, for example,
with its own pose.

A given collection of parts (such as a vertical and a hor-
izontal stroke or two image patches that look like left and
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right eyes) does not generally guarantee the presence of an
object. The arrangement of poses, for example, can be coin-
cidental. Usually there are cues in the relationships among
the parts, possibly in their relational coordinates or in the
matching of certain attributes, that give evidence one way or
another. We will discuss generalizations in which the pres-
ence of parts does not, in and of itself, imply the presence of
an object.

Consider a simple two-layer hierarchy consisting of an
object O and its N parts, Z1, . . . ,ZN . O is binary: absent
(O = 0) or present (O = 1). To bring in the idea of multi-
ple instantiations, we expand the range of the latent vari-
ables Z1, . . . ,ZN from binary (Zk ∈ {0,1}, part k is ab-
sent or present) to n-ary (Zk ∈ {0,1, . . . , n}, part k is ab-
sent or present and in state Zk > 0). The different states of
a part might represent a partitioning of pose space and/or a
selection of styles or rendering models. In the illustration
below, they represent the positions and sizes of the front
and back tires in a broadside view of a car. Of course the
parts need not have the same numbers of states (n = nk ,
k = 1,2, . . . ,N ), but to keep the notation as simple as pos-
sible we will assume that they do.

In general P(O = 1|ZN
1 > 0) ≠ 1, in keeping with the

idea that the presence of the parts is not enough to guarantee
the presence of the object. On the other hand, we will as-
sume that the object is always represented by these same N

parts, so that P(ZN
1 = zN

1 |O = 1) concentrates on zN
1 > 0.

Disjunctions of conjunctions of different collections of parts
will be briefly discussed in Sect. 4.

Staying as close as possible to our earlier notation, we let
Sk

zk
be the support of part k when Zk = zk > 0. (For exam-

ple, different poses of the same part will typically have dif-
ferent supports.) When zk = 0, we interpret Sk

zk
as the empty

set. In order to reformulate the theorem, without an undo list
of conditions and details, we make a simplifying assump-
tion: the support of one part never intersects the support of
another, i.e. for any k ≠ l

Sk
i ∩ Sl

j = ∅ ∀i, j ∈ {1,2, . . . , n} (28)

Of course eventually we will have to contend with multiple
objects in arbitrary poses, and then assumptions of this sort
are untenable. But the message, concerning the ROC perfor-
mance of parts-based testing, will likely turn out to be the
same.

If we let Sk = ⋃n
i=1 Sk

i then Sk ∩ Sl = ∅ whenever k ≠ l,
and we can still think of Sk as the support of part k. The
generalization of (1), the conditional data model, is

P(xS |ZN
1 = zN

1 ) =
( N∏

k=1

P(xSk |Zk = zk)

)
P(x

S\⋃N
k=1 Sk )

=
( N∏

k=1

∏

s∈Sk
zk

p1(xs)

) ∏

s∈S\⋃N
k=1 Sk

zk

po(xs)

(29)

for some “target” and “null” distributions p1 and po (both
formerly Gaussian). What then are the analogs of the op-
timal, the saliency-ordered parts-based, and the template-
based decision rules? What, if anything, can be said about
their relative merits, along the lines of the theorem?

The optimal approach doesn’t really change: threshold
on P(O = 1|XS = xs), which, in light of (29), is the same
as thresholding on the statistic

SG(xS) =
∑

zN
1

∏N
k=1

∏
s∈Sk

zk

p1(xs )
po(xs )

P (ZN
1 = zN

1 |O = 1)P (O = 1)

∑1
o=0

∑
zN

1

∏N
k=1

∏
s∈Sk

zk

p1(xs )
po(xs )

P (ZN
1 = zN

1 |O = o)P (O = o)
(30)

keeping in mind that P(ZN
1 = zN

1 |O = 1) = 0 unless zk > 0
at every k, and the convention Sk

0 = ∅.
As in Sect. 2, we interpret template matching as an op-

timal decision rule under the all-or-none approximation of

P , i.e. either O = 1, or when O = 0 no parts are present
(Z1 = Z2 = · · · = ZN = 0). Accordingly, by modification
of the expression for the optimal statistic SG(xS):

ST (xS) =
∑

zN
1

∏N
k=1

∏
s∈Sk

zk

p1(xs )
po(xs )

P (ZN
1 = zN

1 |O = 1)P (O = 1)

P (ZN
1 = 0|O = 0)P (O = 0) + ∑

zN
1

∏N
k=1

∏
s∈Sk

zk

p1(xs )
po(xs )

P (ZN
1 = zN

1 |O = 1)P (O = 1)
(31)
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To motivate the parts-based test, first re-write the optimal
test, SG(xS) > t , in a sequential form:

SG(xS) = P(Z1 > 0|XS = xS) · P(Z2 > 0|Z1 > 0,XS = xS)

· · ·P(ZN > 0|ZN−1
1 > 0,XS = xS)

· P(O = 1|ZN
1 > 0,XS = xS) > t (32)

In words, test for parts sequentially, and then test the
arrangement of parts for the object. Since the accumulat-
ing product is non-increasing, we quit if and when it drops
to or below the threshold t . In detail, the ith test is
∑

z1>0

P(Z1 = z1|XS = xS)

·
∑

z2>0

P(Z2 = z2|Z1 = z1,XS = xS)

· · ·
∑

zi>0

P(Zi = zi |Zi−1
1 = zi−1

1 ,XS = xS) > t (33)

If the N th test passes, then the final test is for O:
∑

z1>0

P(Z1 = z1|XS = xS)

·
∑

z2>0

P(Z2 = z2|Z1 = z1,XS = xS)

· · ·
∑

zN>0

P(ZN = zN |ZN−1
1 = zN−1

1 ,XS = xS)

· P(O = 1|ZN
1 = zN

1 ) > t (34)

The parts-based version is similar, but always “local.” Re-
place

∑
zi>0 P(Zi = zi |Zi−1

1 = zi−1
1 ,XS = xS) in the opti-

mal test (34) by
∑

zi>0 P(Zi = zi |Zi−1
1 = zi−1

1 ,XSi = xSi ):

SP (xS) =
∑

z1>0

P(Z1 = z1|XS1 = xS1)

·
∑

z2>0

P(Z2 = z2|Z1 = z1,XS2 = xS2)

· · ·
∑

zN>0

P(ZN = zN |ZN−1
1 = zN−1

1 ,XSN = xSN )

· P(O = 1|ZN
1 = zN

1 ) > t (35)

As in the binary case (Zk ∈ {0,1}), context enters, one step
at a time, through the tilted probabilities P(Zi = zi |Zi−1

1 =
zi−1

1 ).
As for saliency, mimic (16) and (18): the first part to test,

k1, is the one with highest local conditional probability,

k1
.= arg max

k

∑

zk>0

P(Zk = zk|XSk = xSk ) (36)

Thereafter, test the remaining part with highest local con-
ditional probability, but now operating in the context of the
confirmed parts, i.e. under the tilted distribution:

ki
.= arg max

k /∈{k1,...,ki−1}

∑

zk1 >0

P(Zk1 = zk1 |XSk1 = xSk1 )

·
∑

zk2>0

P(Zk2 = zk2 |Zk1 = zk1,XSk2 = xSk2 )

· · ·
∑

zk>0

P(Zk = zk|Zki−1
k1

= z
ki−1
k1

,XSk = xSk ) (37)

Which brings us, finally, to the statistic

SQ(xS)

=
∑

zk1>0

P(Zk1 = zk1 |XSk1 = xSk1 )

·
∑

zk2>0

P(Zk2 = zk2 |Zk1 = zk1 ,XSk2 = xSk2 )

· · ·
∑

zkN
>0

P(ZkN = zkN |ZkN−1
k1

= z
kN−1
k1

,XSkN = xSkN )

· P(O = 1|ZN
1 = zN

1 ) (38)

There are two issues at hand: multiple states of the parts
(e.g. representing multiple poses), and the possibility that
a coincidental arrangement of the parts might be indistin-
guishable from the presence of the object. We address these,
separately, in the following paragraphs, and then conclude
this section with a discussion of computation and the coarse-
to-fine (sequential) implementation of parts-based testing.

When the Parts Guarantee the Object In this case P(O =
1|Z1 > 0, . . . ,ZN > 0) = 1 and the theorem is essentially
unchanged:

Corollary 2 If P(ZN
1 = zN

1 ) > 0 for every zN
1 ∈ {0,1, . . . ,

n}N , and if P(O = 1|Z1 > 0, . . . ,ZN > 0) = 1, then in the
foveal limit

1. A SQ
/A SG

remains bounded;
2. A ST

/A SQ
→ ∞ exponentially fast.

Remark We focus on SQ, but from the point of view of as-
ymptotics, at least up to the limitations of our analysis, SP

and SQ (and other part-based methods–see remarks follow-
ing the theorem) are indistinguishable.

Coincidences If P(O = 1|Z1 > 0, . . . ,ZN > 0) = 1, then
detecting O amounts to detecting each of the N parts. What
happens if P(O = 1|Z1 > 0, . . . ,ZN > 0) < 1? Then there
will be configurations, zN

1 > 0, for which P(O = 0|ZN
1 =
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zN
1 ) > 0 (allowing for coincidences). If for these configura-

tions it is also the case that P(O = 1|ZN
1 = zN

1 ) > 0, then
ZN

1 = zN
1 is ambiguous. Perfect performance is impossible,

even with perfect knowledge of the parts. In and of them-
selves, two tires of the right size and separation certainly do
not guarantee a car. Maybe they are on separate cars, or not
on any cars at all. The joint probability of (O,ZN

1 ) defines
its own optimal ROC curve, through the decision function
“declare O = 1 if P(O|ZN

1 = zN
1 ) > t , and O = 0 other-

wise.” This is the ROC curve based on a perfect knowledge
of the parts, which is exactly what we have in the foveal
limit. In short, the optimal decision function given the pixel
data, SG(xS) > t , approaches the optimal decision function
P(O|ZN

1 = zN
1 ) > t in the foveal limit.

Let SG′(zN
1 ) = P(O|ZN

1 = zN
1 ) and let A SG′ be the area

above the corresponding ROC curve. If P(O = 1|Z1 >

0, . . . ,ZN > 0) = 1 then A SG′ = 0, but in general A SG′ > 0.
In order to compare A SG

, A SQ
, and A ST

in the general case,
we compare DSG

.= A SG
− A SG′ , D SQ

.= A SQ
− A SG′ ,

and DST

.= A ST
− A SG′ , all of which are necessarily non-

negative and all of which go to zero in the foveal limit:

Corollary 3 If P(ZN
1 = zN

1 ) > 0 for every zN
1 ∈ {0,1, . . . ,

n}N , then in the foveal limit

1. DSQ
/DSG

remains bounded;
2. D ST

/DSQ
→ ∞ exponentially fast.

The proofs are, again, more-or-less straightforward exten-
sions of the special case treated in Appendix A.

Illustration We built a primitive car detector. We collected
163 side views of cars, 122 from Caltech 101 and an ad-
ditional 42 from Google Images, and 200 natural images,
used as negative examples. Cars were modeled as consist-
ing of nothing more than two tires, one in the front and one
in the back. Hence there were only two parts, Z1 and Z2,
which coded the poses of the front and back tires, respec-
tively. Each tire could be at one of five scales and at any po-
sition within the image. Consequently, the number of states
of each part was about five times the number of pixels in the
image. The joint distribution, P(Z1 = z1,Z2 = z2|O = 1),
on tire placements given the presence of a (sideways) car
(“O = 1”) was restricted to concentrate on pairs (z1, z2) for
which z1 and z2 represented the same scale, and to depend
only on the scale-corrected position of one tire with respect
to the other. Hence P(·|O = 1) was scale and location in-
variant. In the absence of a car, Z1 and Z2 were assumed
to be independent, P(Z1 = z1,Z2 = z2|O = 0) = P(Z1 =
z1|O = 0)P (Z2 = z2|O = 0).

For each of the three decision rules, the data-dependent
calculations come down to likelihood ratios,

P(xSk
zk

|Zk = zk)

P (xSk
zk

|Zk = 0)
(39)

for part k (k ∈ {1,2}) in pose zk (zk ∈ {1, . . . , n}, n ≈
5 × #pixels). We modeled these ratios directly via a suffi-
cient statistic, namely the normalized correlation between a
template and the data. Since our interest is in comparative
performance, rather than good performance, per se, we used
coarse, 8 × 8, templates (T1 and T2), one for each tire. The
likelihood ratio (39) of the data xSk

zk
becomes the likelihood

ratio of the correlation, C(Tk, xSk
zk

), which is well approxi-
mated as a backwards exponential divided by a zero-mean
normal:

P(xSk
zk

|Zk = zk)

P (xSk
zk

|Zk = 0)
= λe

−λ(1−C(Tk,xSk
zk

))

1√
2πσ 2

e
−C(Tk,xSk

zk
)2/2σ 2 (40)

with MLE estimates for λ and σ .
The problem is small enough and the model simple

enough that the entire integration (double summation) could
be computed for each of the three approaches, resulting in
the three ROC curves shown in Fig. 7. Obviously, as with the
word search in the previous example, there is nothing truly
optimal about the “optimal” decision rule, except to say that
it would be best possible if the model were actually true.
Still, the relative merits of the three approaches, as captured
by the three curves, are consistent with the more controlled
experiments reported in Figs. 4, 5, and 6. Even under an in-
correct model, it is better to evaluate the data globally (SG)
than locally (SQ), and a properly configured local test is bet-
ter than an all-or-nothing template (ST ). What is more, local
tests ordered by saliency perform nearly as well as global
tests.

Remarks on Computation In the special case discussed
in Sect. 2, Zk ∈ {0,1}, k = 1,2, . . . ,N , all of these sta-
tistics, ST , SP , and SQ, are computable in the sense that
they involve computation that is linear in N . Only SG,
which includes in the denominator a summation over zN

1 ∈
{0,1}N (fully accounting for background), is intractable (ex-
ponential in N ), barring restrictive assumptions. When Zk ∈
{0,1, . . . , n}, n > 1, all four statistics involve exponential
sums, over the positive set zN

1 ∈ {1,2, . . . , n}N in the cases
of ST , SP , and SQ, and the full set zN

1 ∈ {0,1, . . . , n}N in
the case of SG.

But SP , and SQ offer some relief: both can be tested
against t (SP > t , SQ > t) through a sequence of tests,
each test against the same threshold t , for subsets of i parts,
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Fig. 7 Tires and Cars. We constructed a simple car detector based on
a search for suitably positioned pairs of tires. The probability model
includes crude appearance models, one for each tire, and the empirical
distribution on the relative coordinates between the tires. ROC curves

are shown for the three decision rules: optimal (with respect to the es-
timated model), template, and parts-based testing ordered by saliency.
Parts-based testing performs nearly as well as the (approximated) op-
timal test. (Color scheme same as in Fig. 4)

i = 1,2, . . . ,N . Explicitly, the ith test for SP is

∑

z1>0

P(Z1 = z1|XS1 = xS1)

·
∑

z2>0

P(Z2 = z2|Z1 = z1,XS2 = xS2)

· · ·
∑

zi>0

P(Zi = zi |Zi−1
1 = zi−1

1 ,XSi = xSi ) > t (41)

and for SQ is

∑

zk1>0

P(Zk1 = zk1 |XSk1 = xSk1 )

·
∑

zk2 >0

P(Zk2 = zk2 |Zk1 = zk1 ,XSk2 = xSk2 )

· · ·
∑

zki
>0

P(Zki = zki |Z
ki−1
k1

= z
ki−1
k1

,XSki = xSki ) > t

(42)

In each case, the ith test costs some multiple of ni opera-
tions.5 We can expect that in most applications the first test,
or at least an early test, will fail most of the time. On these
occasions the computational advantage over ST and SG will
be exponential.

But SP , and SQ won’t always fail early, and every de-
tection of O encounters O(nN) operations. Some form of
pruning is needed, and in fact can be quite effective, but

5The cost of choosing the ith most salient part, in SQ, multiplies the
cost by some additional factor, but not bigger than N .

this is of course model dependent. If, for example, the states
z1, z2, . . . , zN represent pose, then P(ZN

1 |O = 1) amounts
to a shape model, which will typically restrict the effective
number of terms in (41)and (42) for all but the smallest i.
As more parts pass, and i increases, the uncertainty in pose
will decrease and the effective number of terms will be a
negligible fraction of ni .

4 Hierarchical Models

Hierarchical models are well-suited for exploiting multi-
level contextual constraints. To what extent can the parts-
based tests studied in Sects. 2 and 3 be reformulated for
more general compositional systems? Here we will explore
one such reformulation, that amounts to a recursive applica-
tion of the localization and tilting operations already studied
in Sects. 2 and 3.

In keeping with our earlier discussions, we will exper-
iment with a model sufficiently simple that the optimal de-
tection algorithm can be computed and used as a benchmark.
Figure 8 depicts a nearly minimal hierarchical model. In ad-
dition to the pixel data, there are three levels of latent vari-
ables, representing reusable parts that presumably could be
found either by themselves or as components of other parts,
objects, or object compositions. The single top-level vari-
able, O, is assumed to indicate the presence or absence, with
O = 1 or O = 0, of an object of interest. All computations
are feasible, thanks to the Markov structure and small prob-
lem size. As already discussed, the object would typically be
modeled as a hierarchy of disjunctions of conjunctions, via
an and/or graph or a related architecture, to accommodate
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Fig. 8 Model of an Instantiation of Object O. In hierarchical mod-
els, objects are usually represented as layered disjunctions of conjunc-
tions. A particular instantiation is a collection of conjunctions, such as
the one shown here used to illustrate parts-based computation in hier-

archical models. The probability model, with its simple, directed and
acyclic graphical structure, admits a computationally feasible calcula-
tion of an optimal statistic for testing O, and provides a benchmark for
evaluating strategies based on testing parts and testing templates

multiple presentations for invariant recognition. We will fo-
cus on verifying a single instantiation of O, which is to say
a selected hierarchy of conjunctions, such as the one shown
in the figure.

The model, a Bayesian net, is specified through its con-
ditional probabilities. Specifically, we assume that P(Z3

1 =
z3

1|O = 1) is one if z1 = z2 = z3 = 1, and zero otherwise.
On the other hand, if O = 0 then the parts are independent:

P(Z3
1 = z3

1|O = 0)

= P(Z1 = z1|O = 0)P (Z2 = z2|O = 0)

× P(Z3 = z3|O = 0) (43)

Similarly, for each i = 1,2,3, P(Yi,1 = Yi,2 = Yi,3 =
1|Zi = 1) = 1, and

P(Yi,1 = yi,1, Yi,2 = yi,2, Yi,3 = yi,3|Zi = 0)

= P(Yi,1 = yi,1|Zi = 0)P (Yi,2 = yi,2|Zi = 0)

× P(Yi,3 = yi,3|Zi = 0) (44)

The distribution on the latent variables is then fully speci-
fied by the a prior probability that O = 1, which we take to
be 0.01, the conditional probability that Zi = 1 given that
O = 0, which we take to be 0.1 for every 1 ≤ i ≤ 3, and
the conditional probability that Yi,j = 1 given that Zi = 0,
which we take to be 0.2 for every 1 ≤ i, j ≤ 3.

The full generative model is completed by specifying a
conditional data distribution, for which we follow the previ-
ous examples and use

P(xS |Yi,j = yi,j ,1 ≤ i, j ≤ 3,Zi = zi,1 ≤ i ≤ 3, O = o)

= P(xS |Yi,j = yi,j ,1 ≤ i, j ≤ 3)

=
∏

1≤i,j≤3

∏

s∈Si,j

G(xs;yi,j ,1)
∏

s∈S\⋃1≤i,j≤3 Si,j

G(xs;0,1)

(45)

Since P(O = 1|Z3
1 = 1) < 1, perfect performance is impos-

sible, even in the foveal limit—see Sect. 3.
The computation of SG(xS) = P(O = 1|XS = xs) is a

standard exercise in graphical models. Concerning template
matching, recall that ST is P̃ (O = 1|XS = xs), where P̃

is the conditional distribution under P given that all of the
latent variables are either on (i.e. 1) or off (i.e. 0):

ST (xS) = P(O = 1)P (Z· = 1|O = 1)P (Y·,· = 1|Z· = 1)

×
∏

1≤i,j≤3

∏

s∈Si,j

G(xs;1,1)

/
{
P(O = 0)P (Z· = 0|O = 0)P (Y·,· = 0|Z· = 0)

×
∏

1≤i,j≤3

∏

s∈Si,j

G(xs;0,1)

+ P(O = 1)P (Z· = 1|O = 1)P (Y·,· = 1|Z· = 1)

×
∏

1≤i,j≤3

∏

s∈Si,j

G(xs;1,1)
}

(46)

where Z· is the same as Z3
1 , Yi,· means (Yi,1, Yi,2, Yi,3),

and Y·,· means (Y1,1, Y1,2, . . . , Y3,3). Using l(v) to denote
the likelihood ratio G(v;1,1)/G(v;0,1), and putting in the
specific parameters of the model:

ST (xS) =
(.01)

∏
1≤i,j≤3

∏
s∈Si,j l(xs)

(.01)(.1)3(.2)9 + (.01)
∏

1≤i,j≤3
∏

s∈Si,j l(xs)

(47)
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As for SP , this is a localized version of a suitable fac-
torization of SG, as in the earlier examples. Start with the
top composition in Fig. 8, through which Z1, Z2, and Z3
compose to make O:

SG(xS) = P(O = 1|XS = xS)

= P(O = 1|XS·,· = xS·,·)

= P(O = 1|Z· = 1)P (Z· = 1|XS·,· = xS·,·)

= P(O = 1|Z· = 1)P (Z1 = 1|XS·,· = xS·,·)

· P(Z2 = 1|Z1 = 1,XS·,· = xS·,·)

· P(Z3 = 1|Z1 = 1,Z2 = 1,XS·,· = xS·,·) (48)

where we use the analogous “dot” notation for sets: Si,· =
Si,1 ∪Si,2 ∪Si,3, and S·,· = ⋃

1≤i,j≤3 Si,j . The top-level fac-
torization of ST is obtained by replacing the exact factoriza-
tion of SG by its local approximation. Observing that XSi,·

is the local data for Zi (see Fig. 8):

SG(xS) −→ P(O = 1|Z· = 1)P (Z1 = 1|XS1,· = xS1,·)

· P(Z2 = 1|Z1 = 1,XS2,· = xS2,·)

· P(Z3 = 1|Z1 = 1,Z2 = 1,XS3,· = xS3,·) (49)

The process is recursive. Each of the three factors
P(Zi = 1|Zi−1

1 = 1,XSi,· = xSi,·), 1 ≤ i ≤ 3, is of the type
we started with, P(O = 1|XS = xS), in that they are con-
ditional probabilities of compositions given the data associ-
ated with their component parts. The only difference is that
the prior probability of the composition, P(Zi = 1), is tilted
by “earlier” tests and the participation of Zi in the composi-
tion of O, P(Zi = 1) → P(Zi = 1|Zi−1

1 = 1). Apply parts-
based factorization to P(Zi = 1|Zi−1

1 = 1,XSi,· = xSi,·):

P(Zi = 1|Zi−1
1 = 1,XSi,· = xSi,·)

= P(Zi = 1|Zi−1
1 = 1, Yi,· = 1)

· P(Yi,· = 1|Zi−1
1 = 1,XSi,· = xSi,·)

= P(Zi = 1|Zi−1
1 = 1, Yi,· = 1)

· P(Yi,1 = 1|Zi−1
1 = 1,XSi,· = xSi,·)

· P(Yi,2 = 1|Zi−1
1 = 1, Yi,1 = 1,XSi,· = xSi,·)

· P(Yi,3 = 1|Zi−1
1 = 1, Y i,2

i,1 = 1,XSi,· = xSi,·) (50)

And then localize:

P(Zi = 1|Zi−1
1 = 1,XSi,· = xSi,·)

−→ P(Zi = 1|Zi−1
1 = 1, Yi,· = 1)

· P(Yi,1 = 1|Zi−1
1 = 1,XSi,1 = xSi,1)

· P(Yi,2 = 1|Zi−1
1 = 1, Yi,1 = 1,XSi,2 = xSi,2)

· P(Yi,3 = 1|Zi−1
1 = 1, Y i,2

i,1 = 1,XSi,3 = xSi,3) (51)

There are no more levels and the terms in (51) can now be
evaluated directly.

The factorization can be made more transparent by ex-
posing its recursive nature, for which we now introduce
some additional notation. This will also serve to more
easily explain the randomly ordered (saliency) version of
the statistic (i.e. SQ(xS), see below). Recall that l(v) =
G(v;1,1)/G(v;0,1). We will use li,j as shorthand for the
likelihood ratio of the data in the support of Yi,j :

li,j =
∏

s∈Si,j

l(xs) (52)

Next, we introduce a general form for the (fixed-order)
parts-based factorization of a composition, say ‘W ’:
SW

P (xSW ;q), where W is an object or part, xSW is the data in
the support of W , and q is the a priori or context-tilted prob-
ability of W . In terms of these representations, and using the
particular parameters of the current model, the factorization
defined by (49) and (51) can be summarized as follows:

SP (xS) = S O
P (xS·,· ;P(O = 1)) (53)

where

S O
P (xS·,· ;α)

= α

α + (1 − α)(.1)3

3∏

i=1

S Zi
P

(
xSi,· ; α + (1 − α)(.1)i

α + (1 − α)(.1)i−1

)

(54)

S Zi
P (xSi,· ;β)

= β

β + (1 − β)(.2)3

3∏

j=1

S Yi,j

P

(
xSi,j ; β + (1 − β)(.2)j

β + (1 − β)(.2)j−1

)

(55)

and finally

S Yi,j

P (xSi,j ;γ ) = γ li,j

γ li,j + (1 − γ )
(56)

If O, itself, were a part in a composition, then, depending
on the order of factors, S O

P (xS·,· ;α) would be evaluated at
the tilted probability of O = 1 rather than its a priori proba-
bility, α = P(O = 1). Every time an evaluation is finished,
of S Yi,j

P (xSi,j ;γ ), S Zi
P (xSi,· ;β), or S O

P (xS·,· ;α), the existing
product of terms can be tested against the common threshold
t , as described in previous sections. Generally speaking, an
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early exit from the recursion will be the rule rather than the
exception.

SQ has the same form as SP , but i ∈ {1,2,3} is replaced
by a permutation ki , and j ∈ {1,2,3} is replaced by permu-
tations mi,j , one for each i. There is therefore one permu-
tation for each of the four compositions in the model. As in
previous examples, the orderings of indices are determined
by a measure of saliency, applied in a greedy (and now re-
cursive) fashion.

First, for each part Zi the composition of subparts Yi,· is
evaluated, locally, and ordered by saliency, under the a priori
probability of Zi = 1. The most likely of the three parts,
factored in the order used for the saliency-based evaluation
of subparts, defines the first set of terms in SQ. This fixes
k1 (the first part) and mk1,1, mk1,2, and mk1,3 (the order of
its subparts). The process is repeated for the remaining two
parts, but now under the tilted probability P(Zi = 1|Zk1 =
1), for each remaining i. This fixes k2, and mk2,1, mk2,2,
and mk2,3. A third pass assigns k3 to the remaining part, and
mk3,1, mk3,2, and mk3,3 to the ordered sequence of subparts
under the distribution tilted by P(Zk3 = 1|Zk2

k1
= 1). Pseudo

code can be found in Appendix B.
Figure 9 shows the results of detection experiments using

the statistics SG, ST , SP , and SQ. There were eight pixels
in the support of each subpart (|Sk,l | = 8). The top panel
compares SG, ST , and SP , and the bottom compares SG,
ST , and SQ. The trend is the same as in the earlier exper-
iments. Parts testing beats template matching, and saliency
improves on parts testing.

Both of the parts-based procedures (fixed order and
random order) have suggestive connections to so-called
bottom-up and top-down computing (see Amit and Geman
1998; Borenstein and Ullman 2002; Kokkinos et al. 2006;
Wu and Zhu 2010, where very similar connections are
made). Overall, the computation is bottom-up, in that sub-
parts are tested before parts, and parts are tested before test-
ing O. Along the way, the test of a subpart changes the prob-
ability of its parent part (bottom-up), which in turn changes
the probabilities of sibling subparts (top-down). A change
in the probability of a part changes the probability of O
(bottom-up), which in turn changes the probabilities of other
parts and their subparts (top-down). More layers and more
elaborate models provide more avenues for both types of
computing. Thus, for example, a given part might be the
child of many parents (reusability), and a given parent might
be instantiated by any one of multiple children sets (as in
and/or graphs and other mechanisms for modeling invari-
ance). In these models, the success of a composition, at a
given threshold, might tilt probabilities in the subgraphs of
many parents, not just one as in the minimal architecture
used here. The spreading exploration of subgraphs, medi-
ated through parent parts via tilting, would in principle ter-
minate by signaling every conjunctive hierarchy in which

Fig. 9 Parts-Based Testing in a Hierarchical Model. The model de-
picted in Fig. 8 was used to generate conditional samples given O = 0
and O = 1, and an ROC curve was built for each of the four statistics,
SG (optimal, black stars), ST (template, blue squares), SP (parts, red
circles in top panel), and SQ (saliency, red circles in bottom panel).
The relative merits of the four approaches are consistent with the ear-
lier experiments (compare to Figs. 4 through 7), and with the analytic
results discussed in Sects. 2 and 3. Saliency boosts performance, as
compared to fixed-order parts-based testing, and parts-based testing
generally outperforms template (all-or-nothing) testing. (Color scheme
same as in Fig. 4)

the root part has a conditional probability (or, more accu-
rately, a localized approximation) greater than threshold.
But to achieve this ideal, a number of modeling hurdles
would need to be overcome, not the least of which is the
development of accurate data models when multiple latent
variables have overlapping supports. (See for example the
POP model by Amit and Trouvé 2007, which includes a
rigorous treatment of overlap in a generative framework.)

We close this section with a remark about parallel versus
serial computing. We have emphasized efficient sequential
testing, but there are many opportunities for efficient par-
allel computation within the same parts-based testing para-
digm. A simple example, for the execution of saliency-based
testing, would be the assignment of a processor to each of
the three subpart-to-part conjunctions in the architecture de-
picted in Fig. 8. Since the first step is to explore each of the
parts Z1, Z2, and Z3, and choose the most salient among
those that exceed threshold (if any), and since these explo-
rations involve no interaction among the parts, there is no
reason not to explore them simultaneously. Following selec-
tion of the most salient part, the process repeats under the
suitably tilted distribution on the remaining parts, offering
the same opportunity for parallel computation. Not much
would be gained in the minimal model used for our illus-
trations, but a great deal would be gained in more elaborate
hierarchical models.
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5 Summary and Conclusion

We have given mathematical and experimental evidence that
in a high-resolution (“foveal”) limit a sequence of local tests
for the parts of an object can perform nearly optimal detec-
tion. If the sequence of tests is ordered by the local con-
ditional probabilities of the parts (“saliency”), then perfor-
mance can be essentially indistinguishable from optimal.

These results speak to a dilemma in compositional mod-
eling: The choice between the presence and absence of a
single object demands knowledge about the appearance of
scenes both when the object is present and when it is absent.
The absence of an object is easy to declare if nothing in the
scene resembles the object. False detections in artificial vi-
sion systems occur overwhelming in regions that contain as-
pects or parts of an object, either in isolation or in composi-
tions of other objects, but not the object itself. Therefore, to
the extent that an object is made from the same components
as other objects, i.e. to the extent that the world is composi-
tional, a large class of objects needs to be modeled to recog-
nize a single or small collection of objects.

We are suggesting, to the contrary, that in a compositional
world a hierarchical model for an object provides an ade-
quate model for the absence of the object, in terms of its
parts and subparts, or more generally in terms of the sub-
trees of the hierarchy. We propose testing strategies that fo-
cus on tests for elementary parts and, recursively, on tests
for subtrees.

Sequential testing of components is a form of coarse-to-
fine search that can be extremely efficient when compared
to global search. But context, generally acknowledged to be
essential to good performance, is not local. We have demon-
strated that an algorithm can be local in its examination of
the pixel data, but still contextual in that it accounts for rela-
tionships among components. These relationships bias the
interpretation of local data in accordance with the object
being tested and the history of already successful tests. We
have devised a statistic for sequential testing that is always
between zero and one and is monotone decreasing with each
new test, allowing for a single threshold and early stopping.

Broadly, we have discussed two diverse approaches to ex-
ploring the posterior distribution. Integration (i.e. summa-
tion, as in Sect. 3) focuses on identifying objects that are
present with sufficiently high probability, regardless of in-
stantiation. Alternatively, computation can be directed to-
wards identifying specific instantiations of specific objects
that are, by themselves, sufficiently likely, as illustrated in
the experiment reported in Sect. 4. The best strategy might
be a mixture of the two. To the extent that the supports
of lowest-level parts are small and local, and progressively
larger for higher-level parts, it might make sense to inte-
grate low-level variables but look for specific instantiations
of high-level variables. Thinking in terms of pose, the exact

location of the most elementary parts may be of no interest
and, in any case, highly ambiguous. Besides, the associated
probabilities would depend critically on discretization, invit-
ing unintended biases. A compelling argument can be made
for integration. On the other hand, the states of high-level
variables might code coarse features of location and struc-
ture, which could be of interest, or even vital, in particular
applications. The right computation is very much architec-
ture and application specific.

Appendix A

Proof of the Theorem We will write p1 for the data model
that generates the intensity at pixel s ∈ S1 or s ∈ S2 when
Z1 = 1 or Z2 = 1, respectively, and p0 for the data model at
s ∈ S \ (S1 ∪ S2), or for s ∈ S1 or s ∈ S2 when Z1 = 0 or
Z2 = 0, respectively. These models, p0 and p1, can be den-
sities or probability mass functions. But they are assumed to
be distinct, p0 ≠ p1.

The theorem, as stated in Sect. 2, is for the special
case p0(xs) = G(xs;0,1) and p1(xs) = G(xs;1,1), but we
will assume only that E0e

tR < ∞ and E1e
tR < ∞, where

R = log p1(X)
p0(X) , and where E0 is expectation with respect to

X ∼ p0 and E1 is with respect to p1 (though less restrictive
hypotheses could be used). The conditions hold, for exam-
ple, in the Gaussian case as well as for many other densities,
and also for probability mass functions p0 and p1 that have
finite and common support, as well as in many discrete cases
with infinite support.

For any statistic S(xS)

A S = Prob{S(XS) < S(X̃S) | XS ∼ P1, X̃S ∼ P0}

where P1(xS) = P(xS | {Z1 = 1} ∩ {Z2 = 1}) and P0(xS) =
P(xS | {{Z1 = 1} ∩ {Z2 = 1}}c). Let

ϵ̃0 = P(Z1 = 0,Z2 = 0 | {{Z1 = 1} ∩ {Z2 = 1}}c),

ϵ̃1 = P(Z1 = 1,Z2 = 0 | {{Z1 = 1} ∩ {Z2 = 1}}c)
and

ϵ̃2 = P(Z1 = 0,Z2 = 1 | {{Z1 = 1} ∩ {Z2 = 1}}c).

From (1):

P0(xS) = ϵ̃0P(xS | Z1 = 0,Z2 = 0)

+ ϵ̃1P(xS | Z1 = 1,Z2 = 0)

+ ϵ̃2P(xS | Z1 = 0,Z2 = 1)

= ϵ̃0
∏

s∈S1

p0(xs)
∏

s∈S2

p0(xs)
∏

s∈S\(S1∪S2)

p0(xs)
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+ ϵ̃1
∏

s∈S1

p1(xs)
∏

s∈S2

p0(xs)
∏

s∈S\(S1∪S2)

p0(xs)

+ ϵ̃2
∏

s∈S1

p0(xs)
∏

s∈S2

p1(xs)
∏

s∈S\(S1∪S2)

p0(xs)

For brevity and clarity, we will focus on the special case
|S1| = |S2| = n (i.e. the parts have equal numbers of pixels
in their supports). More generally n1 = |S1| and n2 = |S2|,
and in the foveal limit n1

n2 = n1(n)
n2(n)

→ c, 0 < c < ∞, as
n → ∞. The proof is essentially the same.

Let an
1 = (a1, a2, . . . , an) = XS1 , bn

1 = (b1, b2, . . . , bn) =
XS2 , ãn

1 = (ã1, ã2, . . . , ãn) = X̃S1 , and b̃n
1 = (b̃1, b̃2, . . . , b̃n)

= X̃S2 . Let ϵ0 = P(Z1 = 0,Z2 = 0), ϵ1 = P(Z1 = 1,Z2 =
0), and ϵ2 = P(Z1 = 0,Z2 = 1). The proof of the theorem
is based on the following lemma, whose proof we will return
to shortly:

Lemma Define the random variables

vi = log
(

p0(bi)p1(b̃i)

p1(bi)p0(b̃i)

)
, wi = log

(
p0(ai)p1(ãi)

p1(ai)p0(ãi)

)

for i = 1, . . . , n, where bn
1 ∼ p1 (iid), b̃n

1 ∼ p0 (iid), an
1 ∼ p1

(iid) and ãn
1 ∼ p1 (iid), and where bn

1 , b̃n
1 , an

1 , and ãn
1 are all

independent. Then

ASG
≥ 0.5(ϵ̃1 + ϵ̃2)Prob

(
1
n

n∑

i=1

(vi − v̄) ≥ −v̄

)

, (57)

ASP
≤ (2ϵ̃0 + 3ϵ̃1 + 3ϵ̃2)

× Prob

(
1
n

n∑

i=1

(vi − v̄) ≥ −v̄ + 1
n

log(c)

)

, (58)

and

AST
≥ ϵ̃1Prob

(
1
n

n∑

i=1

(vi − v̄ + wi) ≥ −v̄

)

, (59)

where v̄ = E(vi) and c ≤ 1 is a constant. (Notice that
v̄ < 0 by Jensen’s inequality, Ew1 = 0 by symmetry, and
Prob(v1 > 0) > 0, which follows from p0 ≠ p1 together with
the fact that Eetv1 < ∞, implying that p0 and p1 have the
same support.)

The theorem follows from the lemma via large deviation
bounds. We will follow the notation and development in Ba-
hadur and Rao (1960). For estimating

Prob

(
1
n

n∑

i=1

(vi − v̄) ≥ −v̄

)

,

let ϕ(t) = Eet(v1−v̄) and ψ(t) = e−(−v̄)tϕ(t). Since
ϕ(t) < ∞ for all t and Prob(v1 − v̄ > −v̄) > 0, according to
Bahadur and Rao (1960) there exists a positive τ < ∞ such
that

ψ(τ ) = inf
t∈R

ψ(t) ≡ ρ .

By Theorem 1 of Bahadur and Rao (1960),

Prob

(
1
n

n∑

i=1

(vi − v̄) ≥ −v̄

)

= ρn

√
n
O(1). (60)

Similarly, for estimating

Prob

(
1
n

n∑

i=1

(vi − v̄) ≥ −v̄ + 1
n

log(c)

)

,

let ψn(t) = e−(−v̄+ 1
n log(c))tϕ(t) = e− 1

n log(c)tψ(t). Then, we
have

Prob

(
1
n

n∑

i=1

(vi − v̄) ≥ −v̄ + 1
n

log(c)

)

= (inft∈R ψn(t))
n

√
n

O(1) ≤ ψn(τ )n√
n

O(1)

= e−log(c)τψ(τ )n√
n

O(1) = ρn

√
n
O(1). (61)

Therefore, by (60) and (61) and the lemma,
ASP
ASG

is bounded.
Next, we consider

Prob

(
1
n

n∑

i=1

(vi − v̄ + wi) ≥ −v̄

)

.

Let

ϕ̃(t) = Eet(v1−v̄+w1) = ϕ(t)Eetw1,

and let ψ̃(t) = e−(−v̄)t ϕ̃(t) = ψ(t)Eetw1 . Since ϕ̃(t) < ∞
for all t and Prob(v1 − v̄ + w1 > −v̄) > 0, there exists a
positive τ̃ < ∞ such that

ψ(τ̃ ) = inf
t∈R

ψ̃(t).

Thus, we have

Prob

(
1
n

n∑

i=1

(vi − v̄ + wi) ≥ −v̄

)

= ψ̃(τ̃ )n√
n

O(1) = ψ(τ̃ )n(Eeτ̃w1)n√
n

O(1)

≥ ρn(Eeτ̃w1)n√
n

O(1). (62)
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Now, since τ̃ > 0 and Ew1 = 0, Eeτ̃w1 > 1 by Jensen’s in-
equality. Therefore, by comparing (62) and (61), and by the

lemma, we obtain that
AST
ASP

→ ∞ exponentially fast. It re-
mains to prove the lemma:

ASG
= Prob((SG(XS))−1 ≥ (SG(X̃S))−1 | XS ∼ P1, X̃S ∼ P0)

= Prob

(

ϵ0

n∏

i=1

p0(ai)p0(bi)

p1(ai)p1(bi)
+ ϵ1

n∏

i=1

p0(bi)

p1(bi)
+ ϵ2

n∏

i=1

p0(ai)

p1(ai)
≥ ϵ0

n∏

i=1

p0(ãi)p0(b̃i)

p1(ãi)p1(b̃i)

+ ϵ1

n∏

i=1

p0(b̃i)

p1(b̃i)
+ ϵ2

n∏

i=1

p0(ãi)

p1(ãi)

∣∣∣ (an
1 , bn

1) ∼ P1, (ã
n
1 , b̃n

1) ∼ P0

)

≥ (ϵ̃1 + ϵ̃2)Prob

(
n∏

i=1

p0(bi)

p1(bi)
≥

n∏

i=1

p0(b̃i)

p1(b̃i)

∣∣∣ bn
1 ∼ p1, b̃

n
1 ∼ p0

)

× Prob

(
n∏

i=1

p0(ai)

p1(ai)
≥

n∏

i=1

p0(ãi)

p1(ãi)

∣∣∣ an
1 ∼ p1, ã

n
1 ∼ p1

)

The last inequality is because the set
{

n∏

i=1

p0(bi)

p1(bi)
≥

n∏

i=1

p0(b̃i)

p1(b̃i)
,

n∏

i=1

p0(ai)

p1(ai)
≥

n∏

i=1

p0(ãi)

p1(ãi)

}

is contained in the set
{

ϵ0

n∏

i=1

p0(ai)p0(bi)

p1(ai)p1(bi)
+ ϵ1

n∏

i=1

p0(bi)

p1(bi)
+ ϵ2

n∏

i=1

p0(ai)

p1(ai)
≥ ϵ0

n∏

i=1

p0(ãi)p0(b̃i)

p1(ãi)p1(b̃i)

+ ϵ1

n∏

i=1

p0(b̃i)

p1(b̃i)
+ ϵ2

n∏

i=1

p0(ãi)

p1(ãi)

}

.

Now, since

Prob

(
n∏

i=1

p0(ai)

p1(ai)
≥

n∏

i=1

p0(ãi)

p1(ãi)

∣∣∣ an
1 ∼ p1, ã

n
1 ∼ p1

)

= 0.5,

we have

ASG
≥ 0.5(ϵ̃1 + ϵ̃2)Prob

(
n∏

i=1

p0(bi)

p1(bi)
≥

n∏

i=1

p0(b̃i)

p1(b̃i)

∣∣∣bn
1 ∼ p1, b̃

n
1 ∼ p0

)

.

= 0.5(ϵ̃1 + ϵ̃2)Prob

(
1
n

n∑

i=1

(vi − v̄) ≥ −v̄

)

,

which is (57).
Next, let

G1(a
n
1 ) = ϵ1

ϵ1 + (1 − ϵ1)
∏n

i=1
p0(ai )
p1(ai )

and

G2(b
n
1) = ϵ2|1

ϵ2|1 + (1 − ϵ2|1)
∏n

i=1
p0(bi )
p1(bi )

.

where ϵ2|1 = P(Z2 = 1 | Z1 = 1). Then,



138 Int J Comput Vis (2011) 93: 117–140

ASP
= Prob(SP (XS) ≤ SP (X̃S) | XS ∼ P1, X̃S ∼ P0)

= Prob(G1(a
n
1 )G2(b

n
1) ≤ G1(ã

n
1 )G2(b̃

n
1) | (an

1 , bn
1) ∼ P1, (ã

n
1 , b̃n

1) ∼ P0)

= ϵ̃0I0 + ϵ̃1I1 + ϵ̃2I2

where

I0 = Prob(G1(a
n
1 )G2(b

n
1) ≤ G1(ã

n
1 )G2(b̃

n
1) | an

1 ∼ p1, b
n
1 ∼ p1, ã

n
1 ∼ p0, b̃

n
1 ∼ p0),

I1 = Prob(G1(a
n
1 )G2(b

n
1) ≤ G1(ã

n
1 )G2(b̃

n
1) | an

1 ∼ p1, b
n
1 ∼ p1, ã

n
1 ∼ p1, b̃

n
1 ∼ p0)

and

I2 = Prob(G1(a
n
1 )G2(b

n
1) ≤ G1(ã

n
1 )G2(b̃

n
1) | an

1 ∼ p1, b
n
1 ∼ p1, ã

n
1 ∼ p0, b̃

n
1 ∼ p1).

Now

I0 ≤ Prob(G1(a
n
1 ) ≤ G1(ã

n
1 ) | an

1 ∼ p1, ã
n
1 ∼ p0)

+ Prob(G2(b
n
1) ≤ G2(b̃

n
1) | bn

1 ∼ p1, b̃
n
1 ∼ p0)

= 2Prob

(
n∏

i=1

p0(bi)p1(b̃i)

p1(bi)p0(b̃i)
≥ 1

∣∣∣ bn
1 ∼ p1, b̃

n
1 ∼ p0

)

Next, since G1(ã
n
1 ) ≤ 1,

I1 ≤ Prob(G1(a
n
1 )G2(b

n
1) ≤ G2(b̃

n
1) | an

1 ∼ p1, b
n
1 ∼ p1, b̃

n
1 ∼ p0)

= Prob

(

ϵ1(1 − ϵ2|1)
n∏

i=1

p0(b̃i)

p1(b̃i)
≤ ϵ2|1(1 − ϵ1)

n∏

i=1

p0(ai)

p1(ai)
+ ϵ1(1 − ϵ2|1)

n∏

i=1

p0(bi)

p1(bi)

+ (1 − ϵ1)(1 − ϵ2|1)
n∏

i=1

p0(ai)

p1(ai)

n∏

i=1

p0(bi)

p1(bi)

∣∣∣ an
1 ∼ p1, b

n
1 ∼ p1, b̃

n
1 ∼ p0

)

≤ J1 + J2 + J3

where

J1 = Prob

(

ϵ1(1 − ϵ2|1)
n∏

i=1

p0(b̃i)

p1(b̃i)
≤ 3ϵ2|1(1 − ϵ1)

n∏

i=1

p0(ai)

p1(ai)

∣∣∣ an
1 ∼ p1, b̃

n
1 ∼ p0

)

,

J2 = Prob

(

ϵ1(1 − ϵ2|1)
n∏

i=1

p0(b̃i)

p1(b̃i)
≤ 3ϵ1(1 − ϵ2|1)

n∏

i=1

p0(bi)

p1(bi)

∣∣∣ bn
1 ∼ p1, b̃

n
1 ∼ p0

)

and

J3 = Prob

(

ϵ1(1 − ϵ2|1)
n∏

i=1

p0(b̃i)

p1(b̃i)
≤ 3(1 − ϵ1)(1 − ϵ2|1)

n∏

i=1

p0(ai)

p1(ai)

n∏

i=1

p0(bi)

p1(bi)

∣∣∣ an
1 ∼ p1, b

n
1 ∼ p1, b̃

n
1 ∼ p0

)

When n is large enough,

max(J1, J2, J3) ≤ Prob

(
n∏

i=1

p0(bi)p1(b̃i)

p1(bi)p0(b̃i)
≥ c1

∣∣∣ bn
1 ∼ p1, b̃

n
1 ∼ p0

)

,

where

c1 = min
(

1
3
,

ϵ1(1 − ϵ2|1)
3ϵ2|1(1 − ϵ1)

)
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is a constant. Therefore,

I1 ≤ 3Prob

(
n∏

i=1

p0(bi)p1(b̃i)

p1(bi)p0(b̃i)
≥ c1

∣∣∣ bn
1 ∼ p1, b̃

n
1 ∼ p0

)

Similarly,

I2 ≤ 3Prob

(
n∏

i=1

p0(bi)p1(b̃i)

p1(bi)p0(b̃i)
≥ c2

∣∣∣ bn
1 ∼ p1, b̃

n
1 ∼ p0

)

where c2 is a constant. Putting everything together,

ASP
≤ (2ϵ̃0 + 3ϵ̃1 + 3ϵ̃2)Prob

(
n∏

i=1

p0(bi)p1(b̃i)

p1(bi)p0(b̃i)
≥ c

∣∣∣ bn
1 ∼ p1, b̃

n
1 ∼ p0

)

= (2ϵ̃0 + 3ϵ̃1 + 3ϵ̃2)Prob

(
1
n

n∑

i=1

(vi − v̄) ≥ −v̄ + 1
n

log(c)

)

where c = min(c1, c2,1) ≤ 1, which is (58).
Finally,

AST
= Prob

(
n∏

i=1

p0(ai)

p1(ai)

p0(bi)

p1(bi)
≥

n∏

i=1

p0(ãi)

p1(ãi)

p0(b̃i)

p1(b̃i)

∣∣∣ (an
1 , bn

1) ∼ P1, (ã
n
1 , b̃n

1) ∼ P0

)

≥ ϵ̃1Prob

(
n∏

i=1

p0(bi)

p1(bi)

p1(b̃i)

p0(b̃i)

p0(ai)

p1(ai)

p1(ãi)

p0(ãi)
≥ 1

∣∣∣ an
1 ∼ p1, b

n
1 ∼ p1, ã

n
1 ∼ p1, b̃

n
1 ∼ p0

)

.

= ϵ̃1Prob

(
1
n

n∑

i=1

(vi − v̄ + wi) ≥ −v̄

)

Which is equation (59), completing the proof. !

Appendix B

Parts-based Testing, Ordered by Saliency in a Hierarchical
System We use the notation introduced in Sect. 4. SQ is
like SP , but with random ordering. The ordering is defined
by four permutations on {1,2,3}: ki , 1 ≤ i ≤ 3, which gives
the order of appearance of the three parts, Z1, Z2, and Z3,
and mi,j , 1 ≤ i, j ≤ 3, which gives the order of appearance
of the three subparts Yi,1, Yi,2, and Yi,3. In sequential testing,
the testing of each part involves a sequence of tests of the
subparts. The second part tested, for example, is Zk2 , for
which Yk2,mk2,3 is the third subpart tested.

Once given the visitation schedules, k and m, the statistic
SQ is defined recursively:

SQ(xS) = S O
Q (xS·,· ;P(O = 1), k) (63)

where

S O
Q (xS·,· ;α, k)

= α

α + (1 − α)(.1)3

×
3∏

i=1

S Zki
Q

(
xSki ,· ;

α + (1 − α)(.1)i

α + (1 − α)(.1)i−1 ,m

)
(64)

S Zi
Q (xSi,· ;β,m)

= β

β + (1 − β)(.2)3

×
3∏

j=1

S
Yi,mi,j

Q

(
x
S

i,mi,j ; β + (1 − β)(.2)j

β + (1 − β)(.2)j−1

)
(65)

and finally

S Yi,j

Q (xSi,j ;γ ) = γ li,j

γ li,j + (1 − γ )
(66)

The algorithm for computing the (data-dependent) visita-
tion schedules (i.e. k and m) is summarized in the following
pseudo-code:
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α = .01

SI = {1,2,3}
while SI ≠ ∅

l = 4 − |SI|
β = α+(1−α)(.1)l

α+(1−α)(.1)l−1

for i ∈ SI

SJ = {1,2,3}
while SJ ≠ ∅

r = 4 − |SJ|
γ = β+(1−β)(.2)r

β+(1−β)(.2)r−1

m̃i,r = arg maxj∈SJ S Yi,j

Q (xSi,j ;γ )

SJ = SJ \ {m̃i,r}

end (while SJ ≠ ∅)

end (for i ∈ SI)

kl = arg maxi∈SI S Zi
Q (xSi,· ;β, m̃)

mkl,· = m̃kl ,·
SI = SI \ {kl}

end (while SI ≠ ∅)
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